In [2]:
import numpy
import math
import pylab

NS

$$h(t) \approx_1 \left( \frac{G}{r^2c^3} M R \right)^\frac{1}{2} \left(\frac{\dot{\nu}_0+\alpha t}{\nu_0 - \dot{\nu}_0t - \alpha t^2/2 }\right)^\frac{1}{2} cos\left(2 (\nu_0 - \dot{\nu}_0 t - \alpha t^2/2 ) t \right)$$$$h(t) \approx_0 \left( \frac{G}{r^2c^3} M R \right)^\frac{1}{2} \left(\frac{\dot{\nu}_0}{\nu_0 - \dot{\nu}_0t }\right)^\frac{1}{2} cos\left(2 (\nu_0 - \dot{\nu}_0 t) t \right)$$

In [24]:
t = numpy.linspace(1,24,100000)
ampiezza = 1e-19
sd = 1e-9
freqIniz = 1
ondaNS = ampiezza*(sd/(freqIniz-sd*t))**(1/2)*numpy.cos(2*(freqIniz-sd*t)*t)

%matplotlib notebook
pylab.plot(t,ondaNS)
pylab.show()



In [22]:
ampPerTempo = ampiezza*(sd/(freqIniz-sd*t))**(1/2)

%matplotlib notebook
pylab.plot(t,ampPerTempo)
pylab.show()


chirp


In [29]:
t = numpy.linspace(1,2,1000)
ampiezza = 1e-2
tcoal = 2.05
freqIniz = 20
ondaChirp = ampiezza*freqIniz*numpy.power((1-t/tcoal),-2/8)*numpy.cos(freqIniz*numpy.power((1-t/tcoal),-3/8)*t)

%matplotlib notebook
pylab.plot(t,ondaChirp)
pylab.show()



In [30]:
ampPerTempo = ampiezza*freqIniz*numpy.power((1-t/tcoal),-2/8)

%matplotlib notebook
pylab.plot(t,ampPerTempo)
pylab.show()



In [ ]: